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Abstract -The variable time step method introduced by Douglas and Gallie for solving a one-dimensionat 
Stefan problem with constant heat tlux at the fixed end is extended to cover a more general boundary 
condition. The numerical results are obtained for solidification of a Iiouid initialiy at its fusion temperature. A 
method due to Goodling and Khader is discussed in detail and somepractical aspects of its implementation 
are investigated. The same.problem is solved by the “modified variable time step” method earlier suggested 
by the present authors, The results from ah the methods are almost identical. An approximate analytical 

solution is obtained by the beat-balance integral method. 

NOMENCLATURE 

4 tem~rature; 

c, time ; 
s, s, positions of ~nterfa~; 

x, x, space coordinates ; 
0, arbitrary constants; 

A,& parameters ; 
r, constant parameter. 

Greek symbols 

ii 
thermal di~usivity of solid ; 

AL 

time step; 
space interval ; 

6 parameter. 

Subscripts 
. . 
U% P, locations in x-t plane. 

superscripts 

k, number of iterations. 

Di.z To their wide range of applications the phase 
change problems arising during the process of mel- 
ting/solidifi~tion have drawn the considerable atten- 
tion of mathematicians, engineers and scientists alike 
in the recent past. These problems are also called 
“moving boundary problems” since the solid/liquid 
interface changes its position continuously during the 
process of phase-change. Sometimes such problems 
are referred to as “Stefan problems” after Stefan [I] 
who published his first paper on this subject. Since the 
boundary condition at the solid/liquid interface in the 
case of a two phase problem, or at the receding end in 
the ease of a one phase (ablation) probtem renders the 
simple heat conduction equation to a non-linear one, 
the exact analytical solution is, in general, not possible 
to obtain. Therefore, recourse is made either to 

approximate analytical methods or to numerical me- 
thods. Amongst the first category the methods due to 
Goodman [2] and Riot [3] are noteworthy while in the 
other a number of methods have been suggests from 
time to time. It will be worthwhile to mention, in 
particular, the general surveys by Muehlbauer and 
Sunderland [4] and by Bankhoff [5] on moving 
boundary problems. 

The numerical methods for a one-dimensional Ste- 
fan problem have been classified by Gupta 161 as (i) 
fixed grid lathes and (ii) variable grid meth~s. The 
fixed grid methods are those in which the space-time 
domain is subdivided into a finite number of equal 
grids for all times. At any time the moving boundary 
lies somewhere between two grid points. The position 
of the moving boundary and temperatures at its 
immediate neigh~uri~g points are calculated by 
using finite difference replacements for un~ua1 in- 
tervals. The methods of Crank [7] and Ehrlich [8] may 
be cited as examples of this class. Under variable grid 
methods the x-t domain is subdivided into equal 
intervals in one direction only. The corresponding grid 
size in the other direction is then determined so that 
the moving boundary always remains at a grid point. 
Murray and Landis [Q] choose equal steps in time 
direction and keep the number of space intervals fixed 
for all times. It should be noted that since the number 
of space intervals is kept fixed, its size changes 
(increases or decreases) as the boundary moves. An- 
other example of a variable grid method is that of 
Douglas and Gallie [lo]. They subdivide the x- 
direction into equal intervals and choose time steps 
such that the moving boundary crosses exactly one 
mesh during that interval. Goodling and Khader 111, 
121 have also given a variable time step method which 
has been discussed in greater detail in the present 
paper. Yet another method is due to Crank and Gupta 
[13, 141 in which c-direction is subdivided into equal 
intervals and size of the space intervals is kept fixed. 
This results in unequal interval near the fixed surface 
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with other intervals remaining of fixed size throughout 

the process. There is another important method, called 
the Isotherm Migration Method (IMM), falling under 

variable grid methods which calculates the movement 
of previously selected isotherms into the medium in 

one time step. Although initially introduced by 
Chernous’ko [t5] the IMM has been systematically 

presented by Dix and Cizek [16]. This method is later 

extended in two dimensions by Crank and Gupta [ 171. 

In the present paper we are concerned with variable 

time step methods only. i.e. when x-direction is sub- 
divided into a finite number of equal intervals and a 

time step is determined such that the boundary 

traverses one space mesh during that time. The paper 
consists of two parts. In Part I the method of Douglas 

and Gallie [9], originally presented for constant heat 
flux at the fixed surface, is extended to cover a more 

general (convective type) boundary condition. We 
will refer to it as Extension of Douglas and Gallie’s 

(EDG) method. In Part II the “modified variable time 

step” method [18] proposed earlier by present authors 
also for a constant heat flux has been applied to solve 
the same problem. This will be referred to as the MVTS 
method in future. Numerical results are obtained for 

both of these methods and the agreement is found to be 
extremely good. Analytical expressions for movement 

of the interface and temperature distribution are also 

obtained using the heat balance integral method of 
Goodman [2]. The results compare quite well with 
those from the EDG and MVTS methods. 

2. PART I: EXTENSION Ok 

DOUGLAS AND GALLIE’S (EDG) METHOD 

The problem 
Let us consider the inward solidification ofa liquid, initially 

at its fusion temperature of unity, enclosed by - I s X 5 1. 
The liquid is allowed to cool by losing heat through surfaces 
X = + I according to a convective boundary condition 
(Fig. 1). 

Since the same boundary conditions are applied on both 
the fixed surfaces X = F 1, the solidification process will be 
symmetrical about X = 0. We will therefore be concerned 
with the solution in the region 0 < X < 1 only. The tempera- 
ture distribution in the other region, i.e. - 1 5 X I 0 can be 
known by symmetry. Mathematically, expressed in its non- 
dimensional form we require the solution of the equation 

&wb .+.u*b 

X=-l X-S(l) x=1 

FK;. 1. One-dimensional solidification with convective boun- 
dary condition. 

along with the boundary condition3 

iu 

and the initial condition 

S(0) : 0 

where S(r) denotes the distance of the movmg boundary frf>rn 
the fixed surface X = 1 at time t. 

Transforming the above system by putting x = I -- .Y mu 
s(t) = I - S(t), the governing equations become 

u= I. .5(f) $ r 5 I, i 3 0. 

ds i’u 

dr = &’ 
x = V(l). ! ’ (1: 

s(0) = 0. 

where s is the distance of the interface from x -= O. 

A variable time grid 
We subdivide the region 0 < x < 1 into. say. ,I 

intervals each of width Ax such that nAx_ = 1. The time 
interval At at each step is chosen such that the 
boundary moves a distance Au during that interval. 

Any point (xi, fj) in .x- I domain is given by 

( 
iAx, :;I1 At,,“) 

where At, denotes the time Interval in which the 
boundary moves one space interval from mA.y to 

(111 + 1)Ax; t, being zero time. Let the moving boun- 

dary be at a distancejllx from the tixed surface Y = 0 at 
time tj (Fig. 2). We wish to calculate At) i.e. the time 

taken by the moving boundary in traversing a distance 

-I- 

L! 
*3 

FIG. 2. Variable time grid along with positions of the inrerfktce 
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Ax from its position jAx to (j + 1)Ax along with 
temperatures at the mesh points x0,x1,. . ,, Xj+ 1 at time 

tj+ 1. 

Extension of the method and its implementation 
Let ui, j represent temperature at the mesh point (i, j) 

of the variable time grid (Fig. 2). Replacing left side of 
(1) by backward diffetence at the point (xi, tj+l) and 
right side by central difference, we can write 

4, j+ 1 - k,j = a”i-l,j+l -iui,j+l + ui+l.j+l 

Atj (A-# 

Rearrangement of above gives 

-WWi_~,j+l +(2ar + l)Ui,j+l -Wui+l,j+l =Ui,p 

i = 1,2 ,..., j, (6) 

where r = AtJ(Ax)‘. 
In order to determine Atj we integrate both sides of 

equation (1) with respect to x, from 0 to s(t). Making 
use of (2) through (4), we get 

d 

-[s 

SO) 

dt o 
u(x,t)dx - (c( + 1)s 1 = -aau(O, t) - ab. 

Integrating further with respect to t from 0 to t and 
using (5) we obtain 

f SW 
abt + aa 

s 
u(0, t)dt = (a + 1)s - 

s 
u(x, t)dx. (7) 

0 0 

The finite difference replacement of (7), when t 

= tj+13 is made to give 

j+l 

abtj+ I +aa C uo,,&-l 

p=1 

= (a + l)(j + l)Ax - Axjsui+I,j+l. (8) 
i=l 

After a little bit of manipulation (8) gives 

[ 

j+l 

Atj= (a+ l)(j+ l)Ax-abtj- Ax 1 Ui+l,j+l 
i=l 

- 
aa i uo,,,A$-l [a@ + auo,j+l)J (9) 

p=1 Ii 
It should be noted that in (8) the finite difference 

replacements of the integrals have been made such that 
the value of Atj obtained from (9) matches with the one 
obtained by satisfying the boundary conditions (2) and 
(4) at j = 1 (see Section 4). 

By choosing a suitable estimate of Atj we compute 
u’s from (6) and the estimated value of Atj is sub- 
sequently improved by (9). This iterative process is 
repeated until desired accuracy in At, is achieved. We 
write the kth iteration for solving (j + 1) equations in 
(j + 1) unknowns, viz. ui j+ I, i = 0, 1, . . ., j as follows : 

u(:)~+~ - (1 + aAx)ug,jjrl = bAx 

- arck’ul!! 1, j+ 1 + (2arfk) + l)$+ 1 

(10) 

--r (k) (k) 
ui+l,j+l = Ui,jt i = 1,2,...,j (11) 

where r(‘) = Aty)/(Ax)’ and u$ 1, ,+ I = 1 from (3) for 
all k. 

Similarly (k + l)th iteration for calculating Atj can 
be written from (9) as 

r 

j+l 

At’!+ 1) = 
I 

(a + l)(j + l)Ax - abtj - AX 1 Ul’$l,j+l 
i=l 

- aa f: uo,pAtp-l [a(b + aub”(j+l)]. (12) 
p=l 1’ 

Choosing Aty) same as Atj- i, already calculated, we 
determine u!‘! ,,,+1,i=0,1,2 ,..., jfrom(lO)and(ll)and 
these values in turn are used to find a new estimate At?’ 
from (12). Aty) substituted in (10) and (11) gives new 
set of values of u(‘)‘s. This process is continued until 
difference between two successive values of Atj be- 
comes small to desired accuracy. 

3. PART II: MODIFIED VARIABLE 
TIME STEP (MVTS) METHOD AND ITS 

COMPARISON WITH OTHER METHODS 

Goodling and Khader [ll, 121 have given a variable 
time step method and have applied it to the problem 
enunciated in Part I. However, numerical values are 
not tabulated by them and some essential steps for 
implementing the method are also not explained 
clearly in any of their papers [ll, 121. Therefore we 
have computed the results independently and have 
explained in detail the relevant points for implemen- 
tation of their method. The same problem is then 
solved by the MVTS method which was earlier 
suggested by the present authors [18] for a moving 
boundary problem with constant heat flux. Let us 
describe these methods in brief. 

(a) Goodling and Khader’s (GK) method 
They arrive at the same set of simultaneous equa- 

tions (10, 11) for determining the temperatures at 
(j + 1)th time level at the kth iteration. The boundary 
condition (4) is replaced by the following finite differ- 
ence formula 

giving 

u$l,j+l 
(k) 

- uj.j+l _ ,4:x, 

Ax I 

At’!@ = 
Ax2 

J 1 - ,w. 
J.J+l 

(13) 

The method suggests that after choosing some value 
ofu?? J, ,+ 1, At?) is calculated from (13). Taking this value 
of A$“, u(O) t,,+l, i=O,1,2 , . . ., j are calculated from (11). 
The boundary condition (10) is then tested for the 
accuracy for the selection of $‘$+I, If the boundary 
condition (10) is not satisfied, Uj, j+ 1 is estimated again 
and a new Atj is obtained from (13) which in turn is 
used to obtain new values of ui, j+ 1. This process is 
repeated until a desired accuracy in (10) is achieved. 

The manner in which uj, j+l is to be selected has not 
been elaborated by them. However, we tried taking 
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uTj,+ 1 equal to uj- 1, j as a suitable estimate ; kept on 
giving a smaI1 increment to it successively until a 
change of sign in the error in (10) is noticed ; and 
interpolation for uj, j+ I is then carried out either by the 
method of chords or the bisection method. We find 

that this procedure does not work in the present 
problem after some time. The method for solving (11) 

becomes unstable and the error in boundary condition 

(10) behaves in an irregular fashion. Therefore we 
discard this method of selecting uj, j+ 1 and adopt the 
following approach. 

Instead of selecting uj, j+ Ir we estimate At?’ from 

At?) = Atj_ 1 + (Atj_ 1 - Atj_,) -+ i. (14) 

where F is small. u(F). ,, , + 1 is calculated using (13) ; values 
of u!O! ,,,+ 1 are then determined from (11); boundary 
condition (10) is checked whether it is satisfied within 
the desired accuracy; if not, a suitable decrement, 

approximately 0.2% of Ax is given to Atj and calcu- 
lations repeated until there is a change of sign in the 

error; the value of Atj is then interpolated by the 
method of bisection. 

(b) Modijied variable time step (M VTS) method 
In this method also we make finite difference 

replacements of (1) at (xi,tj+ I) and obtain (11) as in 
EDG and GK methods. The boundary condition (10) 

is also written as before. The interface condition (4) is 
written, similar to (13), as 

Ax2 
At’!+‘) = ~_ 

J 1 - &? 
J.J+l 

(15) 

Choosing At?’ equal to Atj_ I initially, we solve the 
set of simultaneous equations (10, 11) which gives 

Q,j+l> i=0,1,2,...,j.Usingvalueofu~~+1in(15)we 
get first estimate Atj . (I) This process is repeated until 

desired accuracy in Atj is obtained. It should be noted 

that in the present method, accuracy check is made at 
the interface while in the GK method it is done at the 
fixed end. This results in solving the simultaneous 

equations by Gaussian elimination in the present 
method whereas an iterative technique, which makes 
the process unstable, is used in the GK method. 

4. NUMERICAL COMPUTATIONS 

To start any of the methods from t = 0 to t = At, i.e. 
to calculate At,, we make the following finite difference 
replacements of the boundary conditions at the fixed 
surface and the moving boundary at t = At, giving, 

4.1 - uo.l 

Ax 
= auo. 1 + b, 

and 

uo. 1 -Ul.1 Ax 

--r=z 

respectively. Ehmmatmg uo, I and remembering that 

ul, 1 = 1 we get from the above 

In order to compare our results wc‘ take a sample 

problem with c1 = 1 in (1) and cl ~: 10. h ; 0 in (2), the 
case which has been dealt with by Goodling and 

Khader [ll, 121. Values of Ar and temperature 
distributions have been computed from all the three 
methods, viz. EDG, GK and MVTS for AX := 0.100. 
0.050, 0.025 and 0.010. A maximum error ofO.05 ‘lo ii: 
Af is allowed in the EDG and MVTS methods while 111 
the GK method the same error !Y, illlowed m ;!:c 
boundary condition (10). It has been noticed that 101. 

A.u = 0.01. the GK method breaks down when bou:: 
dary condition is allowed to satisfy withm an UXLIIB~:V 
of 0.05”,, or O.lO”,, therefore the results in i; fc,r i\: 
= 0.01 are computed with a large!- srror (0.5 “,,I. In all 
the methods At, has been calculated from (LO). 

Table 1 gives comparative figures. for all the m:- 

thods, for the time required by the Interface ta mo\lz 
one space interval as well as surface temperatures. A< 

all these methods are iterative, the number of iteratioi?s 

for obtaining a At are shown in parentheses m the A!- 
column. For example. when s(r) : ij.20 and A\: = 0.(3’;~ 

the time taken by the interface m mocing from .~(:i 
z 0.15 too.20 is 0.0186 by EDG,0.1)187 by MVTS and 
0.0186 by the GK method and ihe corresponding 

number of iterations are 3.3 and 8 respectively. ‘la ble 2 
shows temperature distributions in [he solid region ar 

different times for AN = 0.05 from various method> 

It can be seen from Tables I and 2 that the EDG 
method has worked very well throughout. From Table 
I we see that the method converges quite fast. T!te 
value of A?rt, within prescribed accurac), ib obtamed in 3 
iterations or less for most part of the soliditication 
process. At the last stage only. the number ofiterations 
sometimes go up to a maximum of 6. The numerical 
results as well as the number of ltrratlons to obtain Ir 
from the MVTS method compare lery well with tilt 
EDG method. Although the results obtained from the 
GK method agree quite well with the other iwt~ 
methods, the iterations are much larger. 

Further, it may be recollected that numerical results 
from the GK method corresponding to AA -- i).Ol 
have been computed by allowing a relalively larger 
error. It must be emphasized that the method %lf 
estlmatmg uj j+ 1 and its subsequent adjustment in the 
GK method is very crucial. The method tnay fail (not 
converge) or may give inaccuracc results if a different 
initial estimate is chosen. We have further reiined the 
method by selecting an estimate for At rather than for 

uj j+ 1 [see equation (14)J 
Figure 3 shows that the movement of the interface IS 

somewhat faster in the beginning in comparison to 
later part of the process when II assumes an alniosr 
linear relationship with time. It also indicates that 
solidification process is completed at I 2 0.80 when the 
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FIG. 3. Position ofinterface (moving boundary) vs time graph 
(from EDG with Ax = 0.05). 

FIG. 5. Plot of surface temperature against time (from EDG 
with Ax = 0.05). 

interface s(t) has reached x = 1.0. In Fig. 4, curves for 
temperature distributions in the solid region are drawn 
for various times. A graph between surface tempera- 
ture and time is plotted in Fig. 5 which shows an 
appreciable drop in the beginning of the solidification 
process. Very soon, approximately 

small. 

rate of fall of surface temperature 
after t = 0.1 the 
gets exceedingly 

Figures 3-5 have been drawn from the numerical 
results of the EDG method with Ax = 0.05 (Table 2). 
It may be observed that these values are almost 
identical to those obtained from the other methods 
with corresponding Ax. 

The variable time step methods need special atten- 
tion when the movement of the boundary is very slow. 
However, in the present case since the boundary is 
moving quite fast throughout the process of solidifi- 
cation (Fig. 3), the time calculated for a particular 
position of the interface does not differ very much even 
when we have taken different values of Ax (Table 1). 

6. INTEGRAL METHOD 

Using Goodman’s integral method [2] we have 
obtained an approximate analytical expression for the 
temperature distribution 

u(x,t)=l+A(x-s)+B(x-s)Z (17) 

where 

A=- 0 + (3a2 - 2)“2 

s(a + 1) 

B= - 
1 

[2a2 - a(302 - 2)“2 - s2(a + 
1)2 

l] 

L L -iii7 
and 

fr = 1 + 10s. 

FIG. 4. Temperature distributions at various times (from 
EDG with Ax = 0.05). Dotted lines show positions of the 

interface. 
The relationship between position of the interface 

and time is given by the differential equation, 
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dt (30’ - 2)“2{7a4 + 28a3 + 30a2 + 120 + 3) + {3a5 + 12a4 + 30,~~ + 12a2 - 25a - 16) 
-= 
do 600(0 + 1)2 (3r.9 - 2)‘/2 {3a + 2 - (302 - 2)‘/2} 

(18) 

The analytical solution of (18) does not seem ture ~(0, t) at various times. Corresponding numerical 
feasible, therefore, we solve it numerically by using a values are also given from EDG and MVTS methods 
fourth order Runge-Kutta algorithm. Table 3 gives for Ax = 0.05 for comparison. 
position of the interface s(t) and the surface tempera- 

0.1 0.0191 0.0191 0.0178 0.5232 
0.2 0.0529 0.0530 0.0487 0.3635 
0.3 0.1003 0.1004 0.09 18 0.2774 
0.4 0.1608 0.1610 0.1468 0.2237 
0.5 0.2345 0.2347 0.2136 0.1873 
0.6 0.3213 0.3215 0.2920 0.1609 
0.7 0.4211 0.4213 0.3820 0.1410 
0.8 0.5339 0.5342 0.4836 0.1255 
0.9 0.6598 0.6601 0.5967 0.1130 
1.0 0.7987 0.7990 0.7214 0.1028 

Note-Values for EDG and MVTS methods correspond to Ax = 0.05. 

Table 3. Comparison of time t required for a movement s(t) of the interface and the surface temperature 
~(0, t) from the Integral Method with EDG and MVTS methods 

Position of 
interface 

s(t) 

EDG 
method 

Time t 
MVTS 
method 

Integral 
method 

Surface temperature ~(0, t) 
EDG MVTS Integral 

method method method 

0.523 1 0.5375 
0.3634 0.3750 
0.2773 0.2887 
0.2237 0.2349 
0.1873 0.1980 
0.1609 0.1712 
0.1410 0.1508 
0.1255 0.1348 
0.1130 0.1218 
0.1028 0.1111 
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METHODES A PAS DE TEMPS VARIABLE POUR LE PROBLEME DE STEFAN 
A UNE DIMENSION, AVEC DES CONDITIONS AUX LIMITES MIXTES 

R&m&-La mbthode a pas de temps variable introduite par Douglas et Callie pour resoudre un problime 
monodimensionnel de Stefan avec un flux thermique constant a l’extrtmiti fixe est &endue pour couvrir une 
condition limite plus &&ale. Les rbsultats numtriques sont obtenus pour la solidification dun liquide 
initialement & sa temnerature de fusion. Une mdthode due B Goodling et Klader est discutde en d&ail et 
quelques aspects pratiques d’application sont ttudies. Le m&me probleme est rtsolu par la “mtthode a pas de 
temps variable modifiie” antdrieurement suggtrb par les auteurs. Les rtsultats de toutes ces mtthodes sont a 
peu prts identiques. Une solution analytique approchee est obtenue par la methode du bilan integral de 
chaleur. 

METHODEN MIT VARIABLEM ZEITSCHRITT ZUR L&SUNG DES EINDIMENSIONALEN 
STEFAN-PROBLEMS MIT GEMISCHTEN RANDBEDINGUNGEN 

Zusnmmenfassung - Die von Douglas und Gallie eingefilhrte Zeitschritt-Methode zur L6sung des 
eindimensionalen Stephan-Problems mit konstantem Wiirmestrom am festen Ende wird so erweitert, dag sie 
fur eine allgemeine Randbedingung anwendbar wird. Numerische Resultate wurden fiir das Erstarren einer 
anfgnglich auf Schmelztemperatur befindlichen Fliissigkeit ermittelt. Die Methode von Goodling und 
Khader wird ausfiihrlich diskutiert, und einige Gesichtspunkte ihrer praktischen Durchfiihrung werden 
erortert. Dasselbe Problem wird mit der von den Autoren schon friiher vorgeschlagenen variablen 
Zeitschritt-Methode gel&t. Die Ergebnisse aller Verfahren sind fast identisch. Eine analytische Nlherungs- 

losung wurde mit der Wiirmebilanxintegral-Methode erhalten. 

METOAbI IlEPEMEHHbIX BPEMEHHbIX IIIArOB B 3A&4’-IE Cl-E@AHA 
CO CMEBIAHHbIMM IPAHHHHbIMM YCJIOBHRMH 

Annorau~~n - MeTon nepeMeHHbrx Bpe.MeHHnx LOOrOB, IIpeLUIOXeHHbIii AymacoM II raJIJI&l JUIR 

pemeHuR o.nHoMepHo& sanawi CTe+aHa c nOCT05i~HbIh4 TennoBbIM ~OTOK~M Ha @KCHpOBaHHOfi 

rpaHaue,o6oBueHHa cnyqaii 6onee o6ruero rpaHwiHoro ycnoswa. nonyYeHbI=nicneHHbIe pe3ynbTaTbI 

no saTBepneBaHwH, XCWKOCTW, nepBoHasanbHo Haxonuelueficr npH TeMnepaType nnaBneHnn. AaH 

nonpo6HbIiiaHan&i3 MeTona ryanwHra u Kxanepa B paccMoTpeHbI HexoTopbIe npaxTuqecxHe acnexTbI 

ero npaMeHeHwa. Ta me 3anava peueHa hteTonoM cchion@wuapoBaHHoro nepehieHHor0 BpeMeHHoro 

mara*, KOTOpbIfi 6bLn paHee npeanoxceu aBTOpaMn HacToamefi pa6OTbI. PesynbTaTbr, nonyreriubre 
aceMu nepe~ucnemibhlu MeronaMu, oxa3anucb noqrri rfnenTwnbu4u. Hpu6JtmxeHHoe ananurmiecxoe 

pememre nonyveH0 uHTerpanbHbIM MeTonoM TennoBoro 6anaHca. 


